蜜臀AV无码国产精品色午夜麻豆_饥渴老熟妇乱子伦视频_国产69精品久久久久毛片_亚洲av激情男人的天堂_欧洲亚州精品人妻_制服的诱惑视频无打码_九九无码精品久久久久久_蜜桃91又骚又黄在线播放,美女啪啪视频一区二区三区,午夜啪啪日本视频一区二区,性爱视频人人插

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

日期:2025-12-19 21:10
瀏覽次數(shù):2075
摘要:

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
Designation: D 149 – 97a(Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage
nd Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; thenumber immediately following the designation indicates the yearof
original adoption or, in the case of revision, the year of lastrevision. A number in parentheses indicates the year of lastreapproval. A
superscript epsilon (e) indicates an editorial change since thelast revision or reapproval.
This standard has been approved for use by agencies of theDepartment of Defense.
1. Scope over). With the addition of instructions modifying Section12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1.Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

priate safety
nd health practices
nd determine theapplica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Alsosee
6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures,
nd in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under thecondi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectricstrength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen
nd agaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
1
This test method is under the jurisdiction of ASTM Committee D09 on2.2 IEC Standard:
Electrical
nd Electronic InsulatingMaterials
nd isthe direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004.Originally
approved in 1922. Last previous edition approved in 1997 as D149–
97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements," ElectricalProperties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB,Engineering For referenced ASTM standards, visit the ASTMwebsite,
www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM,Philadelphia, 1987. contact ASTM Customer Service at
service@astm.org
. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,"Electrical Standards volume information, refer to the standard’sDocument Summary page on
Properties of Solid Insulating Materials: MolecularStructure
nd Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas
nd R. M. Eichorn,Available from the International Electrotechnical Commission,Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO BoxC700, West Conshohocken, PA 19428-2959, UnitedStates.

D 149 –97a (2004)
2.3 ANSI Standard:environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control,acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material inan
3. Terminology actual application. In most cases it is necessarythat these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, orboth,
3.1.1
dielectric breakdown voltage(electric breakdown
in order to estimate their significance for a particularmaterial.
voltage), n—the potential difference at which dielectricfailure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest;
nd Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B
nd C, which usually
is sometimes shortened to “breakdown voltage."
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler
nd preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B
nd C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength" is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation,
nd conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium
nd temperature during test,
insulation.
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from therecommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.5are
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions statedin
test electrodes on opposite faces of specimens. The specimens
15.2
nd 15.3 maynot be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode
ndspecimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance
nd Use
5.1 The dielectric strength of an electrical insulating mate- 6.Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source,
nd the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 %of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W.43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complexelectrode structures, or for

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing ofVarious Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders
51mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to
6.4mm (0.25 in
.) radius boards, glass, mica, nd ceramic
2 Opposing cylinders
25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic,nd ceramic
edges rounded to
3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods
6.4 mm (0.25in
.) in diameter with edges same as for Type 1, particularly for varnish, plastic,nd other thin film and
D
rounded to
0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates
6.4 mm(0.25 in
.) widend 108 mm (4.25 in
.) long with edges same as for Type 1, particularly for rubber tapesnd other narrow widths
square
nd endsrounded to
3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes
12.7 mm (0.5in
.) in diameter fillingnd treating compounds, gelsnd semisolid compoundsnd greases,
embedding, potting,
nd encapsulating materials
6 Opposing cylinders; the lower one
75 mm (3 in.) in diameter, 15 mmsame as for Types 1nd 2
(
0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to
3 mm (0.12in.) radius
G
7 Opposing circular flat plates,
150 mm diameter , 10 mm thick with flat sheet, plate, or boardmaterials, for tests with the voltage gradient
H
edges rounded to 3 to
5mm
radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Otherelectrodes may be used as specified in ASTM standards or as agreedupon between seller
nd purchaser
where none of these electrodes in the table is suitable for properevaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel.Reference should be made to the standard governing the material tobe tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished
nd free fromirregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by theupper electrode assembly. Unless otherwise specified the upperelectrodes shall be 50 6
2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 fortesting of flat sheet materials. They are less critical as toconcentricity of the electrodes than are
the Types 1
nd 2electrodes.
G
Other diameters may be used, provided that all parts of the testspecimen are at least
15mminside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table
nd in Note , are thosegiven in IEC Publication 243-1 for making tests parallel to thesurface.
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
testing high-loss materials, higher current capacity may be onecurrent setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect uponwhat the current setting should be.
for testing low-capacitance specimens at voltages up to 10kV,
6.1.7Thespecimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-uptransformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensingdial in terms of specimen current.
be capable of varying the supply voltage
nd the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly,
nd without overshoots or tran- control. Ifthe control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltagerespondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any toleakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making(corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests.primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 VoltageMeasurement—A voltmeter must be provided
device that will operate within three cycles. The device shall formeasuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used,in which case divide the reading by =2toget
service
ndprotect it from overload as a result of specimen rms values. Theoverall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shallnot exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec-response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes,will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary,transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac-separate voltmeter winding, on the test transformer, that is
teristics
ndarranged to sense specimen current. Set the unaffected by thestep-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retainedon the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the thatthe breakdown voltage can be accurately read
nd re-
test results. Make the setting high enough that transients, suchcorded.
as partial discharges, will not trip the breaker but not so high6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultantelectrode dielectricbreakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum currentinguponthegeometryandplacementofthetestelectrodes.For
setting is not the same for all specimens
nd depending upon this reason it is important that the electrodes to be used be
the intended use of the material
nd thepurpose of the test, it described when specifying this testmethod,
nd thatthey be
may be desirable to make tests on a given sample at more thandescribed in the report.

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a (2004)
6.3.1
One of the electrodes listed inTable 1 should be the test values. Testing in air may requireexcessively large
specified by the document referring to this test method. If nospecimens or cause heavy surface discharges
nd burning
electrodes have been specified,
elect an applicable one from beforebreakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the makeuse of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be usedflashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested.electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequatesize shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltagesabove
6.3.2 The electrodes of Types 1 through 4
nd Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over thesufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It isrecommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within ofSpecification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectricbreakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Testssurrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limitedto, silicone fluids
nd other liquids intended for use in
pared with tests made with vertical electrodes, particularlytransformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean
nd smooth,
nd appreciable effect upon the test results. In addition tothe
freefromprojectingirregularitiesresultingfromprevioustests.dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminantsare especially important when very thin speci-
6.3.5 It is important that the original manufacture
nd mens (25 μm (1 mil)or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner thenature of the oil
nd the properties of the material being
that the specified shape
nd finish ofthe electrodes
ndtheir tested, other properties, including dissolved gas content,water
edges are maintained. The flatness
ndsurface finish of the content,
nd dissipation factor of the oil may alsohave an
electrode faces must be such that the faces are in close contacteffect upon the results. Frequent replacement of the oil, orthe
with the test specimen over the entire area of the electrodes. useof filters
ndother reconditioning equipment may be
Surface finish is particularly important when testing very thinnecessary to minimize the effect of variations of the qualityof
materials which are subject to physical damage from improp- the oilon the test results.
erly finished electrodes. When resurfacing, do not change the6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face
nd any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bathmust be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress theliquid,
nd with ameans to ensure uniform temperature.
exists, usually the larger in size
nd with the largest radius, Small baths canin some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperaturecontrol. If forced circulation of
6.
3.7Insome special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodesfrom being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give resultsmaintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types ofelectrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oilare to be
6.3.8 Because of the effect of the electrodes on the testpreviously impregnated with the oil
nd not removed from the
results, it is frequently possible to obtain additional informa-oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group ofbath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose thespecimens to air before testing.
electrode. This technique is of particular value for research 6.4.2If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlledhumidity
6.4 Surrounding Medium—The document calling for this chamber mustbe provided for the tests. Ovens meeting the
test method should specify the surrounding medium
nd therequirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided
nd the for introducingthe test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, onlytemperature is to be controlled.
even for short time tests, it is often preferable
nd sometimes 6.4.3Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). useof chambers that can be evacuated
nd filled with the test
Breakdown values obtained in insulating liquid may not be gas,usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the suchchambers will be determined by the nature of the test
insulating liquid
nd the degree ofprevious use may influence program to beundertaken.

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a(2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Samplingprocedures for quality control purposes
tests are to be made shall be of sufficient size to hold the testshould provide for gathering of sufficient samples to estimate
equipment,
nd shall be provided with interlocks to prevent both the average qualitynd the variability of the lot being
accidental contact with any electrically energized parts. Aexamined;
nd forproper protection of the samples from the
number of different physical arrangements of voltage source, timethey are taken until the preparation of the test specimens
measuring equipment, baths or ovens,
nd electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized partssamples from areas that are not immediately adjacent to
be interlocked to shut off the voltage source when opened; ( 2)obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of thefew layers of roll material, the top sheets of a package of
electrodes
nd specimen are notdistorted
nd thatflashovers sheets, or material immediately next to an edge of asheet or
and partial discharges (corona) do not occur except between rollshould be avoided, unless the presence or proximity of
the test electrodes;
nd (3)insertion
ndreplacement of defects or discontinuities is of interest in theinvestigation of
specimens between tests be as simple
nd convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 Thesample should be large enough to permit making as
during the test is frequently desirable. many individual tests asmay be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation
nd Handling:
test. It is essential that the test apparatus,
nd allassociated
9.1.1Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed
ndinstalled for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials itmay
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than
2 mmthick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers,
nd test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences
nd to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies
nd are usually based upon recommenda-
not been dried
ndimpregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling
ndthe geometry of the sample. It is essential that for these
materials both the specimen
nd the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for thatmaterial.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens
nd the electrodes in the specification for
Available from the American Conference of Governmental IndustrialHygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211.the material.

D 149 –97a (2004)
9.2 In nearly all cases the actual thickness of thetest
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the areaof
breakdown. Measurements shall be made at room temperature
(25 6
5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1In making calibrationmeasurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit.Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C
68.1 insuch calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall bemade
11. Conditioning
a part of the report.
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

11.1 The dielectric strength of most solid insulating mate-
12.2.1
.3 In running a series of testscomparing different
rials is influenced by temperature
nd moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given toa rate that allows the average time to be between 10
atmosphere of controlled temperature
ndrelative humidity
nd 20 s. If the time to breakdown cannot be adhered to,the
before testing. For such materials, the conditioning should be timeshall be made a part of the report.
included in the standard referencing this test method. 12.2.2Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in testelectrodes at the preferred starting voltage
nd in steps and
Practice D618. duration as shown in Fig. 2 until breakdownoccurs.
12.2.2.1 From the list in Fig. 2,
elect the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ately below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediately before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained adielectric withstand voltage, V , equal to the
ws
formlytothetestelectrodesfromzeroatoneoftheratesshown voltage ofthe step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of theholding period at any step, the dielectric withstand
otherwise specified. voltage,V,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it tocompletedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculatedielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of standstrength is to be calculated from the thickness
nd the
between 10
nd 20s. It may be necessary to run one or two dielectric withstandvoltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps,but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci-steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite ofthanonespecimeninagroup,thetestsshouldberepeatedwith
6

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a(2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20,50,
nd 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment
20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-RiseTest
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot bemet.
________________________________________________________________120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s
nd (300 6 10)sbreakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that canbe
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur beforethe
nddecomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage.This form of breakdown is generally irreversible.Repeated
12.2.2.6 Recordthe initial voltage, the voltage steps, theapplicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage,
nd the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shallbe
tions of voltage may be used to give positive evidence of
zero.
breakdown
nd tomake the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s
nd 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage
nd at the rate if thespecimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplyingvoltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmaderapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current ina
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate fora
(except for flashover tests)
nd should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initialvoltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwisespecified for the particular material.

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a(2004)
13. Calculation 15. Precision
nd Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 Theresults of an interlaboratory study with four
or V/mil at breakdown,
nd forstep-by-step tests, the gradient laboratories
nd eight materials aresummarized in Table 2.
at the highest voltage step at which breakdown did not occur. Thisstudy made use of one electrode system
nd one test
8
13.2 Calculate the average dielectric strength
nd the stan- medium.
dard deviation, or other measure of variability. 15.2Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application,
nd the extent to which tran-
14.1 Report the following information: sient voltage surges arecontrolled or suppressed, thecoeffi-
14.1.1Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20%ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens fromthe same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient ofvariation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in differentlaboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment inthe same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average
8.7
A
電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

Tests performed with specimens in oil using Type 2 electrodes (seeTable 1).
14.1.2.6 Location of failure (center of electrode, edge, or typesof equipment
nd controlling specimen preparation,
outside). electrodes
nd testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making adirect comparison
14.1.3.1 Average dielectric withstand strength for step-by-ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation
ndcoefficient of variation,
from those listed in Table 1, or if the failure criterion ofthe
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning
nd specimen preparation,
controlled, the precisions cited in 15.2
nd 15.3 may not be
14.1.3.6 Ambient atmosphere temperature
nd relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8
nd 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element,
nd 8
The complete report is available from ASTM International. RequestRR:D09-
14.1.3.12 Date of test. 1026.

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a(2004)
15.5 Use special techniques
nd equipment for materials 16. Keywords
having a thickness of
0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accurately determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-controltesting;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise;step-
specimen geometry, electrodes,
nd other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spotswithin the volume
under stress sometimes determine the test results.
X
1.1.1 Abrief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test
nd Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting testson
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpretingthe
tend to decrease with increasing electrode area, this areaeffect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid
ndsemisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal
nd discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity
nd the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function,respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused byspeaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area
nd producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid
ndsemi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness,
nd there isa substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximately as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted
nd poured
high electric field intensities, causing dielectric
nd ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will stilloccur
when the field intensity becomes sufficient to accelerate elec-dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is calledingless to report dielectric strength data for a materialwithout
the intrinsic dielectric strength. It cannot be determined by thisstating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for mostmaterials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials areperature may have a negligible effect. In general, thedielectric
generally nonhomogeneous
nd may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an areaextent to which this is true depends upon the material under
of the test specimen other than that where the field intensity istest. When it is known that a material will be required to
greatest
nd sometimes in an area remotefrom the material function at other than normal room temperature,it is essential

D 149 –97a (2004)
that the dielectric strength-temperature relationship for theproperties are usually such that edge breakdown will generally
material be determined over the range of expected operating occurif the electric strength, E , approaches the value given
s
temperatures. by:
X
1.4.4
Time—Test results will beinfluenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen
nd low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant
nd the product ofpermittivity
ndelectric strength is
time-dependent, although in some cases the latter mechanism 10
approximately a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high localfield
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results inone
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capableof
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under testaffects
not be made from results obtained by this method.
the dielectric loss
nd surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such astransformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me
8m = m 1 . se8s = s 1
X1.
5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, theelectrical apparatus is that it withstand the voltage imposedon
criterion simplifies to it in service. Therefore there is a greatneed for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me
8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenientpreliminary test to determine whether a material
material the criterion becomes merits further consideration, but itfalls short of a complete
evaluation in two important respects. First, the condition of a
E
2f
E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to theconfigu-
where: ration of the electric field
nd the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium,
nd association
f = frequency,
with other materials. Second, in service there aredeteriorating
e
nd e8 =permittivity,
influences, heat, mechanical stress, corona
nd its products,
D = dissipation factor, and
contaminants,
ndso forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests,
nd a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =
8.854310F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E
nd,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified
nd its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study" InterimEngineering,
Report No. 5, Index No ME-111273.Available from Naval Sea SystemsCommand
Technical Library, Code SEA 09B 312, National Center 3, Washington,DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford UniversityPress, 1951. 20362-5101.

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149
D 149 –
97a (2004)
inferring other conditions such as variability, or to indicate thetest it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses ofimportant rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X
2.1.2 In some standards which specify that thedielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned withaccordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies orreference is made to this test method is not completely in
with elements of test equipment or elements of proceduralconformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort hasdocument, including those listed in this appendix, as a model
been made to include as many as possible of the standardsforreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete,5.5.
and standards written or revised after publication of this
appendix are not included.

 

国产看真人毛片爱做A片| 国产精品第一国产精品| 粉嫩AV久久一区二区三区| 国产精品久久久久久久久久| 做爰丰满少妇1313| 国产毛片精品一区二区色欲黄A片| 被男人添B超爽视频| 无码AV免费精品一区二区三区| 日日鲁鲁鲁夜夜爽爽狠狠视频97| CHINESE熟女老女人HD视频| 国产亚洲精品久久久久久郑州| 人妻丰满精品一区二区A片| 99ER热精品视频| 亚洲成av人影院| 国产偷人爽久久久久久老妇APP| 在线18av | 青草视频在线播放| 熟女人妻一区二区三区免费看| 国产欧美日韩综合精品一区二区| 色婷婷基地 | 777精品久无码人妻蜜桃| 四LLL少妇BBBB槡BBBB| 免费看成人AA片无码视频吃奶| 欧美人与性动交CCOO| 国产精品爽爽久久久久久| 国产精品第一国产精品| 国产欧美性成人精品午夜| 色135综合网| 欧洲色区| 性按摩玩人妻HD中文字幕| 国产精品久久久久久久久久| 免费观看全黄做爰的视频| 青草视频在线播放| 欧美经典片免费观看大全| 国产精品第一国产精品| 久久在线视频免费观看| 人与禽A片啪啪| 国产美女无遮挡裸体毛片A片| 三男玩一女三A片| 天天射网站| 久久久无码精品成人A片小说| 国产毛片精品一区二区色欲黄A片| 99国产精品白浆在线观看免费| 中文字幕无码人妻少妇免费视频| 亚洲国产精品二二三三区| 丁香五月花| 日本猛少妇色XXXXX猛叫| 国产精品第一国产精品| 欧美三级巜人妻互换| .精品久久久麻豆国产精品| 中文字幕日产A片在线看| 一本道在线电影| 99国产精品久久久久久久久久久| 国产欧美日韩综合精品一区二区| 69精品人人人人| 国产精品A成V人在线播放| 国产精品99久久久久久久女警| 色狠狠色噜噜AV天堂五区| 最近中文字幕2019视频1| 最近中文字幕大全免费版在线 | 国产又粗又大又爽又黄| 亚洲国产精品二二三三区| 亚洲精品字幕| 国产69久久久欧美黑人A片| 香蕉人妻AV久久久久天天| 99热久久这里只有精品| 亚洲中文字幕在线观看| 激情内射人妻1区2区3区| 中文幕无线码中文字蜜桃| 免费观看全黄做爰的视频| 黄桃AV无码免费一区二区三区 | 欧洲MV日韩MV国产| 一本道在线电影| 少妇人妻偷人精品无码视频新浪| AA片在线观看视频在线播放| 国精产品一区一区三区免费视频| 国产特级毛片AAAAAAA高清| 欧美成人猛片AAAAAAA| 国产成人精品一区二区三区视频| 在线看的免费网站| 99国产精品久久久久久久久久久 | 精品一二三区久久AAA片| 日本少妇裸体做爰高潮片| 黑人糟蹋人妻HD中文字幕| 性做久久久久久久免费看| 四LLL少妇BBBB槡BBBB| 中国女人做爰A片| 极品人妻VIDEOSSS人妻| 无码激情AAAAA片-区区| 少妇搡BBBB搡BBB搡毛茸茸 | 亚洲亚洲人成综合网络| 久久综合久色欧美综合狠狠| 99国产精品白浆在线观看免费| 中文字幕精品无码一区二区| 疯狂做受XXXX高潮A片| 久久AAAA片一区二区| 欧美槡BBBB槡BBB少妇| 青青久在线视频免费观看| 乱精品一区字幕二区| 国产精品久久久久久久久久| 六月成人网| 熟女人妻一区二区三区免费看| 四川BBB搡BBB爽爽视频| 精品夜夜澡人妻无码AV| 夜夜穞天天穞狠狠穞AV美女按摩| 538在线精品| 欧美精品中文字幕亚洲专区| 久久AAAA片一区二区| 极品人妻XXXXOOOO| 色135综合网| 国产婷婷色综合AV蜜臀AV | 丰满少妇猛烈A片免费看观看| 荫道BBWBBB高潮潮喷| 人妻丰满精品一区二区A片| 精品欧美一区二区三区久久久| 久久AAAA片一区二区| 亚洲V国产V欧美V久久久久久| 国产欧美精品AAAAAA片| 国产美女无遮挡裸体毛片A片| 国产精品99久久久久久久女警| 无码AV免费精品一区二区三区| 欧美性色A片免费免费观看的| 夜精品无码A片一区二区蜜桃| 99国产精品久久久久久久久久久| AA片在线观看视频在线播放| 99热在线观看| 国产真实乱了老女人视频| 国产精品第一国产精品| 免费视频WWW在线观看网站 | 国产精产国品一二三在观看| 无码激情AAAAA片-区区| 亚洲日本韩国| 成人美女网| 在线看的免费网站| 桃色成人网| 亚洲乱码日产精品BD在线观看| 99精品视频在线观看| 99ER热精品视频| 日本不卡一区二区三区| 99精品偷自拍| 亚洲日本韩国| 国产成人精品一区二三区熟女在线| 国产精品第一国产精品| 欧美性生交XXXXX无码小说| 五月综合激情婷婷六月色窝 | 风流少妇A片一区二区蜜桃| 日本熟妇乱妇熟色A片蜜桃| 人妻体体内射精一区二区| 中文字幕欧美日韩VA免费视频| 国产肥白大熟妇BBBB视频| 日本熟妇乱妇熟色A片蜜桃| 亚洲日韩一页精品发布 | 国产看真人毛片爱做A片| 国产精产国品一二三在观看| 亚洲无AV在线中文字幕| 无码激情AAAAA片-区区| 风流少妇A片一区二区蜜桃| 亚洲乱码日产精品BD| 秋霞免费视频| av国产精品| 国产成人精品亚洲线观看| 成熟妇人A片免费看网站| 国产伦亲子伦亲子视频观看| 亚洲乱码精品久久久久..| www.五月天| 国产毛片精品一区二区色欲黄A片| 另类少妇人与禽zOZZ0性伦| 日韩中文字幕| 公的粗大挺进了我的密道| 疯狂做受XXXX高潮A片| 丰满少妇乱A片无码| 欧洲MV日韩MV国产| 丰满少妇乱A片无码| 少妇高潮呻吟A片免费看软件| 最近中文字幕2019视频1| 欧美激情性做爰免费视频| 青柠影视免费高清电视剧| 国产69精品久久久久999小说| 夫妇交换刺激做爰| 国产做爰视频免费播放| 午夜天堂一区人妻| 欧美电影在线观看| 免费看欧美成人A片无码| 另类少妇人与禽zOZZ0性伦| 欧美性生交XXXXX无码小说 | 国产真人做爰视频免费| 嫩草AV久久伊人妇女超级A| 97高清国语自产拍| 少妇人妻人伦A片| 国产伦亲子伦亲子视频观看| 99精品偷自拍| 国产欧美日韩综合精品一区二区 | 99ER热精品视频| 中文中文在线| 搡BBBB搡BBB搡五十| 欧美S码亚洲码精品M码| 欧美搡BBBBB摔BBBBB| 亚洲亚洲人成综合网络| 欧美丰满熟妇BBB久久久| 成人做爰高潮A片免费视频| 中国丰满熟女A片免费观| 国产欧美日韩综合精品一区二区| 精品国产乱码久久久久夜深人妻| 农村熟妇高潮精品A片| 99re在线播放| 亚洲无AV在线中文字幕| 99视频| 欧美日本日韩| 午夜天堂一区人妻| 99ER热精品视频| 国产亚洲精品AAAA片APP| 图片区 小说区 区 亚洲五月| 成熟妇人A片免费看网站| 激情内射人妻1区2区3区| 麻豆AV一区二区三区| 69精品人人人人人人人人人| 女人被躁到高潮嗷嗷叫小| 日本精品人妻无码77777| 少妇人妻人伦A片| 免费观看欧美成人AA片爱我多深| 三男玩一女三A片| 成人做爰A片免费看视频| 搡BBBB搡BBB搡18| 欧洲第一无人区观看| 亚洲12p| 日本不卡高字幕在线2019| 午夜成人片400| 亚洲中文字幕在线观看| 午夜不卡久久精品无码免费 | 蜜桃人妻无码AV天堂三区| 日产精品久久久久久久蜜臀| 99网| 国产乱人偷精品人妻A片| 欧美性猛交99久久久久99按摩| 久久人妻熟女一区二区| 日本欧美成人片AAAA| 国产精品a无线| 国产成人片| 亚洲乱码日产精品BD| 天天色情站| 男妓跪趴把舌头伸进我的嘴巴| 99ER热精品视频| 欧洲色区| 国精产品一区一区三区有限公司杨| 精品亚洲国产成AV人片传媒| 51精品国自产在线| 久久久99精品免费观看| 亚洲爆乳无码精品AAA片蜜桃| 国产精品99久久久久久久女警 | 蜜桃人妻无码AV天堂三区| 欧美韩国日本| 中字幕视频在线永久在线观看免费| 男男野外做爰全过程69| 国产偷人爽久久久久久老妇APP| 国外亚洲成AV人片在线观看| 99精品国产乱码久久久人妻| 最近中文字幕在线中文视频| 亚洲亚洲人成综合网络| 国产又色又爽又黄又免费| 成人做爰A片免费看视频| 欧美美女视频| 国产AV一区二区三区最新精品| 精品少妇人妻AV无码专区偷人| 亚洲蜜桃精久久久久久久久久久久| 国产精品久久久久9999小说| 亚洲精品无AMM毛片| 国自产拍偷拍精品啪啪一区二区| 青柠影视免费高清电视剧| 噼里啪啦完整版中文在线观看| 午夜天堂一区人妻| 极品少妇XXXX精品少妇偷拍| 激情五月婷婷| 日本不卡高字幕在线2019| 性av| BBWCUCKOLD精品熟妇| 777精品久无码人妻蜜桃| 久草热久草在线视频| 午夜成人片400| 国产婷婷色综合AV蜜臀AV| 欧美搡BBBBB摔BBBBB| AA片在线观看视频在线播放| 久久精品一区二区三区四区| 少妇搡BBBB搡BBB搡毛茸茸| 男女啪啪做爰高潮无遮挡| 中文成人在线| 全部老头和老太XXXXX| 成人无码精品1区2区3区免费看| 少妇做爰免费视看片| 欧洲MV日韩MV国产| 精品一区二区三区四区五区六区| 国产99久久久国产精品免费看| 国产乱妇无乱码大黄AA片 | 国外亚洲成AV人片在线观看| 无码激情AAAAA片-区区| 精品一二三区久久AAA片| 色一情一乱一伦一区二区三区| 少妇大叫太大太粗太爽了A片| 国产又黄又爽又色的免费| 精品一二三区久久AAA片| 少妇伦子伦精品无吗| 国产成人精品一区二三区熟女在线 | 噼里啪啦在线观看免费完整版视频| CHINESE熟女老女人HD视频| 99热在线观看| 午夜不卡久久精品无码免费 | 亚洲亚洲人成综合网络| 六月成人网| 国产69久久久欧美黑人A片| 成人做爰高潮A片免费视频| 丰满人妻妇伦又伦精品国产| 丰满少妇乱A片无码| 日日影院 | 国产精产国品一二三在观看| 亚洲成av人影院| 欧美性做爰大片免费看办公室| 亚洲欧洲中文日韩久久AV乱码| 全部老头和老太XXXXX| 久久久99精品免费观看| 欧类av怡春院| 高潮毛片又色又爽免费| 久久视频在线视频| 图片区 小说区 区 亚洲五月| 激情五月婷婷| 日产精品一线二线三线芒果| 国产精品激情AV久久久青桔| 亚洲成av人影院| 欧美大片| 国产成人精品一区二三区熟女在线| 少妇AB又爽又紧无码网站| 亚洲成av人影院| 国外亚洲成AV人片在线观看 | 欧美成人AAA片一区国产精品| 亚洲亚洲人成综合网络| 成人视频网| 欧美槡BBBB槡BBB少妇| 疯狂做受XXXX高潮A片动画| 日日鲁鲁鲁夜夜爽爽狠狠视频97| 被强行糟蹋的女人A片| 精品亚洲国产成AV人片传媒| 无码激情AAAAA片-区区| 国产做A爰片毛片A片美国| 无人区码一码二码三码医生系列| 成人做爰A片免费看视频| 国产精品爽爽久久久久久| 天天射网站| 国外亚洲成AV人片在线观看| 午夜少妇在线观看视频| 97精品人人A片免费看| 亚洲精品无人区| 成人无码髙潮喷水A片| 第四色在线观看| 午夜成人片400| 强辱丰满人妻HD中文字幕| 国产午夜精品AV一区二区麻豆| 欧美日韩欧美| 国产成人精品亚洲线观看| 国产精品久久久久久久久久久久| 99精品国产乱码久久久人妻 | 熟妇内谢69XXXXXA片| 欧美精品中文字幕亚洲专区| www.色五月| 最近中文字幕大全免费版在线 | 成人午夜天| 国产精品人成A片一区二区| 亚洲乱码精品久久久久..| 少妇人妻人伦A片| 极品少妇XXXX精品少妇偷拍| 亚洲乱码日产精品BD| 亚洲最大成人综合网720P| 中字幕视频在线永久在线观看免费| 日韩精品无码一区二区| 青草青草视频2免费观看| 久久久国产精品黄毛片| 国产亚洲精品久久久久久牛牛| 国产精产国品一二三在观看| 激情内射人妻1区2区3区| 亚洲中文字幕在线观看| 夜夜爽77777妓女免费下载| 国产暴力强伦轩1区二区小说| 国产精品涩涩涩视频网站| 99国产精品白浆在线观看免费| 国产亚洲精品AAAAAAA片| 亚洲乱码日产精品BD| 国产成人精品一区二三区熟女在线| 精品一区二区三区免费毛片爱| 国产一区二区三区影院| 免费观看全黄做爰的视频| 久久小说网| 久久精品国产一区二区三区四区| 中文字幕人妻熟女在线| 少妇高潮呻吟A片免费看软件| 亚洲精品V天堂中文字幕| 嫩草AV久久伊人妇女超级A| 无码激情AAAAA片-区区 | 欧美成人精品A片免费一区99| 国产精产国品一二三在观看| 五月综合激情婷婷六月色窝 | 亚洲精品又粗又大又爽A片 | 婷婷97狠狠成人网站| 99热这里有精品| av国产精品| 欧美精品中文字幕亚洲专区| 亚洲国产精品二二三三区| 欧美三级巜人妻互换| 婷婷色情 | 亚洲亚洲人成综合网络| 国产成人精品一区二三区熟女在线| 无码免费人妻A片AAA毛片西瓜| 国产美女无遮挡裸体毛片A片| 国产精品涩涩涩视频网站| 欧美丰满熟妇BBB久久久| 欧美日韩精品人妻狠狠躁免费视频 | 国产AV一区二区三区日韩| 亚洲色无码A片一区二区麻豆| 国产精产国品一二三在观看| 99精品成人无码A片观看金桔| 超pen个人视频97| 麻豆AV一区二区三区| 少妇AB又爽又紧无码网站| 熟女人妻视频| 久久AV无码精品人妻系列试探| 久久综合久色欧美综合狠狠| 精品人妻伦九区久久AAA片| 风流少妇A片一区二区蜜桃| 国产日韩欧美| 国产精品久久久久久久久久| 国产一区二区三区影院| 欧美日本日韩| 欧美成人猛片AAAAAAA| 欧美性做爰大片免费看办公室 | 香蕉久久av一区二区三区| 无码免费人妻A片AAA毛片西瓜| 久久综合久色欧美综合狠狠| 亚洲精品久久久无码| 粉嫩AV久久一区二区三区| 激情内射人妻1区2区3区| 少妇性按摩无码中文A片| 亚洲亚洲人成综合网络| 国产午夜伦鲁鲁| 国产69久久久欧美黑人A片| 国产午夜精品AV一区二区麻豆| 国产精产国品一二三在观看| 99精品国产在热久久| 少妇人妻偷人精品无码视频新浪 | 性做爰1一7伦| 嫩草AV久久伊人妇女超级A| 专区无日本视频高清8| 欧美搡BBBBB摔BBBBB| BBWCUCKOLD精品熟妇| 五月综合激情婷婷六月色窝| 国产亚洲成AV人片在线观黄桃| 少妇性按摩无码中文A片| 亚洲情综合五月天| 乱岳熟女50岁| 天天射网站| 最新高清无码专区| 香蕉久久国产AV一区二区| 亚洲妇女熟BBW| 97色吧| 四川BBB搡BBB爽爽视频| 亚洲无AV在线中文字幕| 国产精品久久久久久久久久久久| 午夜少妇在线观看视频| 亚洲国产精品二二三三区| 亚洲中文字幕在线观看| 男女啪啪做爰高潮无遮挡| 国产肥白大熟妇BBBB视频| 少妇大叫太大太粗太爽了A片| 国产成人精品一区二三区熟女在线| 99国产在线精品视频| 乱精品一区字幕二区| 精品影院| 99精品视频在线观看| 香蕉AV777XXX色综合一区| 免费视频WWW在线观看网站| 无遮挡国产高潮视频免费观看| 中文字幕日产A片在线看| 中文字幕日产A片在线看| 大地9中文在线观看免费高清| 国产FREESEXVIDEOS性中国| 爽tv | 欧美成人精品三区综合A片| 国产av天堂| 精品夜夜澡人妻无码AV| 国产日韩欧美| 成人无码精品1区2区3区免费看 | 激情又色又爽又黄的A片| 香蕉AV777XXX色综合一区| 色婷婷成人做爰A片免费看网站| 久久久天堂国产精品女人| 免费无码毛片一区二区A片| 国产精自产拍久久久久久蜜| 欧美性生交XXXXX无码小说| 夜精品无码A片一区二区蜜桃| 中文成人在线| 情欲禁地| 精品一二三区久久AAA片| 少妇高潮呻吟A片免费看软件| 国产AV国片偷人妻麻豆| 51精品国自产在线| 中文字幕日产A片在线看| 情欲禁地| 亚洲精品字幕| 少妇性按摩无码中文A片| 国产在线aaa片一区二区99| 成人做爰A片免费看网站找不到了| 极品人妻VIDEOSSS人妻| 成人美女网| 色狠狠色噜噜AV天堂五区 | 成人免费120分钟啪啪| 国产69久久久欧美黑人A片| 国产偷人爽久久久久久老妇APP| 丰满少妇乱A片无码| 99精品成人无码A片观看金桔| 少妇性按摩无码中文A片| 国产精产国品一二三在观看| 国产国产乱老熟女视频网站97| 欧美性猛交99久久久久99按摩| 成 人片 黄 色 大 片| 国产av天堂| 欧美激情性做爰免费视频| 99re热视频这里只精品| 中文字幕有多少字| 丰满少妇猛烈A片免费看观看| 精品欧美一区二区三区久久久| 色五月激情五月| 超pen个人视频97| 无码激情AAAAA片-区区| 欧亚成人A片一区二区| 五月综合激情婷婷六月色窝| 情欲禁地| 被强行糟蹋的女人A片| 亚洲亚洲人成综合网络| 国产做爰视频免费播放| 欧美丰满熟妇BBB久久久| 熟女人妻视频| 久久精品99国产精品日本| 熟妇无码乱子成人精品| 国产毛多水多女人A片| 粉嫩AV久久一区二区三区| 色偷偷AV亚洲男人的天堂| 亚洲日本韩国| 99精品偷自拍| 国产精品18久久久| 久久国产一区二区三区| 伊人激情AV一区二区三区| 欧美三级巜人妻互换| 亚洲人妻av伦理| 国产精品99久久久久久久女警| BBWCUCKOLD精品熟妇| 国产人妻人伦精品一区二区| 搡BBBB搡BBB搡五十| 69精品人人人人| 99热这里有精品| 亚洲中文字幕在线观看| 亚洲人成色A777777在线观看| 丰满少妇猛烈A片免费看观看| 99视频| 成人片黄网站色大片免费毛片| 男女啪啪做爰高潮无遮挡| 熟妇人妻中文字幕无码老熟妇| 国产精品久久久久久亚洲毛片| 婷婷成人基地| 国产美女无遮挡裸体毛片A片| 99精品国产在热久久| 国产在线aaa片一区二区99| 亚洲精品无码一区二区| 国产成人片| 性按摩玩人妻HD中文字幕| 亚洲V国产V欧美V久久久久久| 嫩草AV久久伊人妇女超级A| 男男野外做爰全过程69| 婷婷五月花| 久久er99热精品一区二区| 亚洲V国产V欧美V久久久久久| 成人中文网| 风流少妇A片一区二区蜜桃| 香蕉久久av一区二区三区| 久久在线视频免费观看| 精品国产乱码久久久久久免费| 国产日韩欧美| 亚洲妇女熟BBW| 国产成人精品一区二三区熟女在线| 成人美女网| 国产肥白大熟妇BBBB视频 | EEUSS鲁片一区二区三区| 国产毛片精品一区二区色欲黄A片 久久久国产精品黄毛片 | 国产做A爰片毛片A片美国 | 内射干少妇亚洲69XXX| 免费视频WWW在线观看网站| 极品人妻VIDEOSSS人妻| 亚洲精品久久久无码| 嫩BBB搡BBBB榛BBBB| 欧美激情性做爰免费视频| 精品夜夜澡人妻无码AV| 日韩无码专区| www.五月天| 少妇搡BBBB搡BBB搡毛茸茸 | 97精品人人A片免费看| 中文成人在线| 亚洲成av人影院| 色婷婷成人做爰A片免费看网站| 亚洲情综合五月天| 香蕉久久国产AV一区二区| 午夜不卡久久精品无码免费| 亚洲情综合五月天| 少妇人妻人伦A片| 免费无码毛片一区二区A片| 最近中文字幕大全免费版在线 | 亚洲国产精品VA在线看黑人| 久久精品国产AV一区二区三区 | 人与禽A片啪啪| 92久久精品一区二区| 国产日产亚洲系列最新| 九九视频在线观看视频6 | 国产毛片欧美毛片久久久| 96精品成人无码A片观看金桔| 河北真实伦对白精彩脏话| 一本色道久久88综合日韩精品| 欧美色综合天天久久综合精品| 日本不卡高字幕在线2019| 欧美性生交XXXXX无码小说| 久久精品99国产精品日本| 免费视频WWW在线观看网站| 国产69久久久欧美黑人A片| 国产肥白大熟妇BBBB视频| 精品亚洲国产成AV人片传媒| 性色做爰片在线观看WW| 国产精品久久久久9999小说 | 久草热久草在线视频| 国产精品涩涩涩视频网站| 亚洲经典三级| 日日影院 | 国产小精品| 国产成人精品亚洲线观看| 国产精产国品一二三在观看| 天天射网站| 高清一区二区三区日本久| 久草热8精品视频在线观看| 蜜桃五月天| 欧美成人一区二区三区在线视频| 97色婷婷| 无码人妻AV久久久一区二区三区| 一本色道久久88综合日韩精品 | 无码人妻少妇色欲AV一区二区| 强辱丰满人妻HD中文字幕| 亚洲中文字幕在线观看| www.五月天| 国产精产国品一二三在观看| 成人国产欧美大片一区| 欧美成人AAA片一区国产精品| 嫩BBB搡BBBB榛BBBB| 日本欧美成人片AAAA| 丰满少妇猛烈A片免费看观看| 五月网站| 青青青在线视频国产| 国产无套精品一区二区| 午夜天堂一区人妻| 亚洲乱码日产精品BD| 极品少妇XXXX精品少妇偷拍| 99re在线播放| 熟女少妇内射日韩亚洲| 亚洲V国产V欧美V久久久久久| 99re在线播放| 亚洲亚洲人成综合网络| 熟女人妻一区二区三区免费看| 亚洲精品久久久久久久久久飞鱼 | 国产精品美女久久久久AV超清| 亚洲中文字幕在线观看| 青青青在线视频国产| 成人精品视频99在线观看免费| 国产无套精品一区二区| 免费视频WWW在线观看网站| 欧美激情性做爰免费视频| 日日影院 | 成人无码髙潮喷水A片| 亚洲字幕AV一区二区三区四区| 99精品成人无码A片观看金桔| 久草热8精品视频在线观看| 无码少妇高潮喷水A片免费| 国产欧美熟妇另类久久久| 在线观看国产高清视频免费网站| 精品一二三区久久AAA片| 欧美成人猛片AAAAAAA| 69精品人人人人| 丰满老熟妇BBBBB搡BBB| 97高清国语自产拍| 国产AV国片偷人妻麻豆| 99网| 色五月激情五月| 天天射网站| 69精品人人人人| 欧美大肥婆大肥BBBBB| 农村熟妇高潮精品A片| 丰满少妇乱A片无码| 97精品人人A片免费看 | 美国少妇性做爰| 极品人妻VIDEOSSS人妻| 亚洲亚洲人成综合网络| 中文字幕精品无码一区二区 | 亚洲熟妇无码乱子AV电影| 精品一二三区久久AAA片| 成人免费120分钟啪啪| 最新高清无码专区| 无码日本精品XXXXXXXXX| 公的粗大挺进了我的密道| 欧美成人AAA片一区国产精品| 亚洲无AV在线中文字幕| 在线观看免费人成视频无码| 香蕉AV777XXX色综合一区| 中文字幕在线免费看线人| 51精品国自产在线| 99精品视频在线观看| 亚洲精品无码一区二区| 女人高潮内射99精品| BBWCUCKOLD精品熟妇| 嫩草AV久久伊人妇女超级A| 丰满少妇乱A片无码| 极品人妻VIDEOSSS人妻| 国产毛片精品一区二区色欲黄A片| 性做爰A片免费视频A片直播| 国产精品第一国产精品| 少妇高潮A片无套内谢麻豆传| 免费无码毛片一区二区A片| 无码激情AAAAA片-区区| 国产精品久久久久久妇女6080| 亚洲精品久久久久久久久久吃药| 中国女人内射6XXXXX| 亚洲亚洲人成综合网络| 久久精品99国产精品日本| 国产高潮A片羞羞视频涩涩| 亚洲精品久久久久AV无码| 精品无码久久久久久久久| 中文中文在线| 久草热8精品视频在线观看| 少妇真实被内射视频三四区 | 亚洲乱码日产精品BD| 中字幕视频在线永久在线观看免费| 99精品偷自拍| 欧美电影在线播放| 任你躁XXXXX麻豆精品| 欧美槡BBBB槡BBB少妇| 国产AV一区二区三区日韩| 久久精品国产一区二区三区四区| 免费视频在线观看的网站| 国产熟妇的荡欲午夜视频| 亚洲精品又粗又大又爽A片| 国产古装妇女野外A片| 欧美影院| 另类少妇人与禽zOZZ0性伦| 丰满女老板BD高清A片| 国产精品久久久久久喷浆| 国产又色又爽又黄又免费| 中文字幕日产A片在线看| 国产看真人毛片爱做A片| 香蕉久久国产AV一区二区| 精品一二三区久久AAA片| 国产毛片欧美毛片久久久| 欧类av怡春院| 全部老头和老太XXXXX| 亚洲精品久久久无码| 中文字幕丰满孑伦无码专区| 大伊香蕉精品视频在线| 少妇性BBB搡BBB爽爽爽视頻 | 日本欧美成人片AAAA| 1000部毛片A片免费观看| 欧美日韩中文国产一区发布| 国产偷人爽久久久久久老妇APP| 情欲禁地| 青柠影视免费高清电视剧| 国产精品色情AAAAA片软件| 少妇人妻丰满做爰XXX| 疯狂做受XXXX高潮A片| 国产片XXXXA片国语对白| 日韩精品无码一区二区| 国产成人精品123区免费视频| 丰满少妇乱A片无码| 丰满少妇猛烈A片免费看观看| 免费观看全黄做爰的视频| 精品少妇人妻AV无码专区偷人| 欧美激情性做爰免费视频| 第四色在线观看| 成人综合网站| 国产毛片精品一区二区色欲黄A片| 欧美美女视频| 国产午夜伦鲁鲁| 麻豆WWWCOM内射软件| 99在线精品免费视频| 国产做爰视频免费播放| 日本精品人妻无码77777 | 日本不卡一区二区三区| 三十熟女| 国产AV一区二区三区最新精品| 国外亚洲成AV人片在线观看| 国产av天堂| 人妻熟女一区二区AV| 噼里啪啦在线观看免费完整版视频| 精品国产AV色一区二区深夜久久| 怡红院AV亚洲一区二区三区H| 无码人妻精品一区二区蜜桃色欲 | 欧美色综合天天久久综合精品| 国产精产国品一二三在观看| 国产真实乱了老女人视频| 欧美色综合天天久久综合精品| 国产肥白大熟妇BBBB视频| 青草视频在线观看视频| 国产69久久久欧美黑人A片| 婷婷97狠狠成人网站| 亚洲乱码日产精品BD| 四虎国产精品永久在线国在线| 中文字幕丰满孑伦无码专区| 色狠狠色噜噜AV天堂五区| 成人无码精品1区2区3区免费看| 乱精品一区字幕二区| 粉嫩AV久久一区二区三区| 老美AA片| 另类少妇人与禽zOZZ0性伦| 99热久久这里只有精品| 亚洲亚洲人成综合网络| 性生生活大片又黄又| JAPANRCEP老熟妇乱子伦视频| WWW.久久.COM| 日产精品一线二线三线芒果| 国产亚洲精品AAAAAAA片| 色婷婷成人做爰A片免费看网站| 免看黄大片AA | 亚洲情综合五月天| 国产古装妇女野外A片| 中文字幕精品无码一区二区| 超pen个人视频97| 中文字幕日产A片在线看| 国产AV一区二区三区最新精品| 99噜噜噜在线播放| 国精产品一区一区三区免费视频| 亚洲熟妇AV乱码在线观看| 97在线观视频免费观看| 麻豆AV一区二区三区| 国产av天堂| 国产成人精品亚洲线观看| av国产精品| 丰满老熟妇BBBBB搡BBB| 日欧一片内射VA在线影院| 国产精品久久久久9999小说 | 欧美精品中文字幕亚洲专区| 香蕉人妻AV久久久久天天| 伊人激情AV一区二区三区| .精品久久久麻豆国产精品| .精品久久久麻豆国产精品| 国产精品18久久久| 久久久99精品免费观看| 国产看真人毛片爱做A片| 国产看真人毛片爱做A片| 极品人妻VIDEOSSS人妻| 亚洲中文字幕在线观看| 久久99国产综合精品免费| 国产69久久久欧美黑人A片| 欧美成人AAA片一区国产精品| 中文字幕丰满孑伦无码专区| 精品一二三区久久AAA片| 国产JK精品白丝AV在线观看| 免费无码毛片一区二区A片 | 影音先锋女人AA鲁色资源| 欧美成人猛片AAAAAAA| 国产日韩精品SUV| 国产又粗又大又爽又黄| 国产做爰视频免费播放| 大地资源色婷婷视频在线| 国产日韩欧美| 欧美精品中文字幕亚洲专区| 俺去也五月| 国产亚洲精品久久久久久郑州| 久久小说| 欧洲第一无人区观看| 成人精品视频99在线观看免费| 亚洲中文字幕在线观看| 中文成人在线| 免费看欧美成人A片无码| 国产SUV精品一区二区6| 国产美女无遮挡裸体毛片A片| 国产精品久久久久久亚洲毛片| 少妇搡BBBB搡BBB搡毛茸茸 | 乱精品一区字幕二区| 人妻丰满精品一区二区A片| 欧美顶级少妇做爰HD| 久久久天堂国产精品女人| 国产伦亲子伦亲子视频观看| 无码激情AAAAA片-区区| 国产精品久久久爽爽爽麻豆色哟哟| 丰满少妇猛烈A片免费看观看| 国产肥白大熟妇BBBB视频| 日本欧美成人片AAAA| 国产精品人人做人人爽人人添| 欧美性色A片免费免费观看的| 麻豆WWWCOM内射软件| 中文字幕无码人妻少妇免费视频| 国产FREESEXVIDEOS性中国| 97在线观视频免费观看| 97碰碰碰免费公开在线视频| 婷婷色情 | www.五月天| 99在线精品免费视频| 99精品国产乱码久久久人妻 | 亚洲乱码日产精品BD| 亚洲亚洲人成综合网络| 公的粗大挺进了我的密道| 极品少妇XXXX精品少妇偷拍| 精品无码久久久久久久久| 日日躁夜夜躁狠狠久久AV| 少妇大叫太大太粗太爽了A片 | 八戒青柠影视剧在线观看| 伊人综合网站| 性一交一乱一交A片久| 精品一二三区久久AAA片 | 99精品偷自拍| 丰满少妇猛烈A片免费看观看| 亚洲精品V天堂中文字幕| 色狠狠色噜噜AV天堂五区| 风流少妇A片一区二区蜜桃| 成人亚洲精品久久久久| 国产乱子轮XXX农村| 无码激情AAAAA片-区区| 国产午夜精品一区二区三区四区| 国产欧美精品AAAAAA片| AA片在线观看视频在线播放| 国产精自产拍久久久久久蜜| 亚洲亚洲人成综合网络| 强壮的公次次弄得我高潮A片日本 | 久久久国产精品黄毛片| 日产精品一线二线三线芒果| 中文字幕日产A片在线看| 人妻丰满精品一区二区A片| 国产真实乱了老女人视频| 欧美性猛交XXXX乱大交极品| 乱岳熟女50岁| 无码日本精品XXXXXXXXX | 99精品国产乱码久久久人妻| 极品人妻VIDEOSSS人妻| 成人无码髙潮喷水A片| 日本猛少妇色XXXXX猛叫| 成人做爰A片免费看视频 | 熟女少妇内射日韩亚洲| 亚洲经典三级| 欧美在线| 少妇性BBB搡BBB爽爽爽电影| 成人做爰高潮A片免费视频| 亚洲国产无线乱码在线观看| 国产精产国品一二三在观看| 午夜性做爰电影| 国产成人精品一区二区三区视频| 国产精品人人做人人爽人人添| 少妇高潮A片无套内谢麻豆传| 国产精品第一国产精品| 99ER热精品视频| 亚洲最大成人综合网720P | 美国少妇性做爰| 久久久亚洲精品一区二区三区浴池| 国产FREESEXVIDEOS性中国| 欧美槡BBBB槡BBB少妇| 亚洲亚洲人成综合网络| www.色五月| A片试看50分钟做受视频| 国产美女无遮挡裸体毛片A片| 国产成人精品一区二三区熟女在线| 伊人在线视频| 国产精品久久欧美久久一区| 欧美性生交XXXXX无码小说| 欧类av怡春院| 亚洲熟妇AV乱码在线观看| 国产XXXX搡XXXXX搡麻豆| 成人精品一区日本无码网| 精品人妻伦九区久久AAA片| 嫩草AV久久伊人妇女超级A| 大地资源色婷婷视频在线| 性做爰A片免费视频A片直播 | 国产日产亚系列精品版优势| 年轻的妺妺伦理HD中文| 女人高潮内射99精品| 国产在线aaa片一区二区99| CHINESE熟女老女人HD视频| 亚洲欧洲中文日韩久久AV乱码| 亚洲无AV在线中文字幕| 欧美 日韩 人妻 高清 中文| 日本少妇裸体做爰高潮片| 日韩少妇内射免费播放| 三年高清大片免费观看国语| 国产AV一区二区三区日韩| 国产毛片精品一区二区色欲黄A片 欧美槡BBBB槡BBB少妇 | 女人被男人吃奶到高潮| 99热久久这里只有精品| 少妇性按摩无码中文A片| 青青青在线视频国产| 精品国产乱码久久久久久免费| 美国少妇性做爰| 成人无码髙潮喷水A片| 成人国产欧美大片一区| 精品一二三区久久AAA片| 中文字幕日本最新乱码视频| 午夜不卡久久精品无码免费 | 777影视理论片大全在线观看| 性生生活大片又黄又| 亚洲亚洲人成综合网络| 丰满老熟妇BBBBB搡BBB| 亚洲无AV在线中文字幕| 粉嫩AV久久一区二区三区| 国产AV国片偷人妻麻豆| 亚洲精品又粗又大又爽A片| 国产69久久久欧美黑人A片 | 青青草视频免费观看| 久久久GOGO无码啪啪艺术| 成人国产欧美大片一区| 99精品偷自拍| 青草青草视频2免费观看| 激情内射人妻1区2区3区| 河北真实伦对白精彩脏话| 性色做爰片在线观看WW| 亚洲经典三级| 亚洲人妻av伦理| 99精品成人无码A片观看金桔| .精品久久久麻豆国产精品| 亚洲乱码日产精品BD| 俺也去色| 亚洲视频一区| 亚洲12p| 欧洲色区| 777米奇影视第四色| 无码人妻少妇色欲AV一区二区| AA片在线观看视频在线播放| 欧美性生交XXXXX无码小说| 亚洲V国产V欧美V久久久久久| 国产精品第一国产精品| 极品少妇高潮啪啪AV无码| 极品少妇XXXX精品少妇偷拍| 日韩丰满少妇无码内射| 日韩免费视频| 国产一区二区三区影院| 亚洲欧美在线观看| 成人做爰A片免费看网站找不到了| 精品人妻伦九区久久AAA片| 老美AA片| 国产精品激情AV久久久青桔| 欧美成人精品三区综合A片| 图片区 小说区 区 亚洲五月| www.色五月| 少妇真实被内射视频三四区| 国产精品激情AV久久久青桔| 欧美成人猛片AAAAAAA| 少妇高潮呻吟A片免费看软件| 丰满少妇猛烈A片免费看观看| 午夜精品久久久久久久爽| 青草视频在线观看视频| 国产熟妇乱子伦hd| 熟妇人妻中文字幕无码老熟妇| 中文字幕按摩做爰| 日本人妻伦在线中文字幕| 亚洲亚洲人成综合网络| 国产毛片精品一区二区色欲黄A片| 国产成人一区二区三区在线观看| 亚洲情综合五月天| 免费看欧美成人A片无码| 专区无日本视频高清8 | 日本精品久久久久中文字幕| JAPANRCEP老熟妇乱子伦视频| 精品一区二区三区四区五区六区| 国产亚洲精品久久久久久豆腐| 亚洲人妻av伦理| 亚洲视频一区| 亚洲蜜桃精久久久久久久久久久久| 亚洲亚洲人成综合网络| 国产精产国品一二三在观看| 国产精产国品一二三在观看| 另类少妇人与禽zOZZ0性伦| 国产精产国品一二三在观看| 极品人妻VIDEOSSS人妻| 欧美叉叉叉BBB网站| 亚洲电影在线观看| 人妻丰满精品一区二区A片| 熟女人妻视频| 国外亚洲成AV人片在线观看| 国产精品一区在线观看你懂的| 久久精品国产AV一区二区三区 | 97精品人人A片免费看| 中文幕无线码中文字蜜桃| 少妇2做爰HD韩国电影| 99re6在线视频精品免费| 中文中文在线| 无码人妻精品一区二区蜜桃色欲 | 亚洲字幕AV一区二区三区四区 | 丰满少妇猛烈A片免费看观看| 风流少妇A片一区二区蜜桃| 国产欧美精品AAAAAA片| 国产亚洲精品AAAA片APP| 亚洲欧洲中文日韩久久AV乱码| 精品夜夜澡人妻无码AV| 中文幕无线码中文字蜜桃 | 欧美槡BBBB槡BBB少妇| 国精产品一区一区三区有限公司杨| 欧美日韩精品人妻狠狠躁免费视频| 国产午夜精品一区二区三区四区| 免费看欧美成人A片无码| 国产SUV精品一区二区6| 久久小说网| 成人做爰A片免费看网站找不到了 国产精产国品一二三在观看 | 国产全是老熟女太爽了| 中文字幕免费高清电视剧| 日本欧美成人片AAAA| 内射爽无广熟女亚洲| 日韩少妇内射免费播放| 午夜不卡久久精品无码免费| 国产偷人爽久久久久久老妇APP| 国产精产国品一二三在观看| 欧洲MV日韩MV国产| 精品夜夜澡人妻无码AV| 蜜臀AV在线观看| 日本猛少妇色XXXXX猛叫| 国产真人做爰视频免费| 精品夜夜澡人妻无码AV| 韩国真做片在线观看| 国产乱子轮XXX农村| 美国少妇性做爰| 成人国产欧美大片一区| 大地9中文在线观看免费高清| 四川BBB搡BBB搡多人乱亂| 中文字幕丰满孑伦无码专区| 亚洲V国产V欧美V久久久久久| 亚洲亚洲人成综合网络| 成人无码髙潮喷水A片| 成人做爰A片免费看网站找不到了| 欧美三级巜人妻互换| 国产精品天天狠天天看| 粉嫩AV久久一区二区三区| 超pen个人视频97| 国产亚洲成AV人片在线观黄桃| 久久久99精品免费观看| 亚洲亚洲人成综合网络| 中文字幕无码人妻少妇免费视频| 欧美电影在线观看| 青草视频在线观看视频| 欧美性生交XXXXX无码小说 | 中文字幕丰满孑伦无码专区| 屁股翘好撅高迎合跪趴| 亚洲国产精品SUV| 少妇性按摩无码中文A片| 国产精品久久久久久久久久免费| 国外亚洲成AV人片在线观看| AA片在线观看视频在线播放 | 成人国产欧美大片一区| 亚洲日韩一页精品发布 | 亚洲精品无码一区二区 | 五月开心播播网| 欧美搡BBBBB摔BBBBB| 欧美性猛交AAAA片黑人 | 香蕉AV777XXX色综合一区| 成人无码髙潮喷水A片| 精品国产乱码久久久久久免费| 少妇做爰免费视看片| 中字幕视频在线永久在线观看免费 | 性按摩玩人妻HD中文字幕| 成人午夜天| 男妓跪趴把舌头伸进我的嘴巴| 99国产精品久久久久久久久久久|